Calibration-Free Pulse Oximetry Based on Two Wavelengths in the Infrared — A Preliminary Study
نویسندگان
چکیده
The assessment of oxygen saturation in arterial blood by pulse oximetry (SpO₂) is based on the different light absorption spectra for oxygenated and deoxygenated hemoglobin and the analysis of photoplethysmographic (PPG) signals acquired at two wavelengths. Commercial pulse oximeters use two wavelengths in the red and infrared regions which have different pathlengths and the relationship between the PPG-derived parameters and oxygen saturation in arterial blood is determined by means of an empirical calibration. This calibration results in an inherent error, and pulse oximetry thus has an error of about 4%, which is too high for some clinical problems. We present calibration-free pulse oximetry for measurement of SpO₂, based on PPG pulses of two nearby wavelengths in the infrared. By neglecting the difference between the path-lengths of the two nearby wavelengths, SpO₂ can be derived from the PPG parameters with no need for calibration. In the current study we used three laser diodes of wavelengths 780, 785 and 808 nm, with narrow spectral line-width. SaO₂ was calculated by using each pair of PPG signals selected from the three wavelengths. In measurements on healthy subjects, SpO₂ values, obtained by the 780-808 nm wavelength pair were found to be in the normal range. The measurement of SpO₂ by two nearby wavelengths in the infrared with narrow line-width enables the assessment of SpO₂ without calibration.
منابع مشابه
Historical Review HISTORY OF BLOOD GAS ANALYSIS. VII. PULSE OXlMETRY
Pulse oximetry is based on a relatively new concept, using the pulsatile variations in optical density of tissues in the red and infrared wavelengths to compute arterial oxygen saturation without need for calibration. The method was invented in 1972 by Takuo Aoyagi, a bioengineer, while he was working on an ear densitometer for recording dye dilution curves. Susumu Nakajima, a surgeon, and his ...
متن کاملPulse oximetry: fundamentals and technology update
Oxygen saturation in the arterial blood (SaO2) provides information on the adequacy of respiratory function. SaO2 can be assessed noninvasively by pulse oximetry, which is based on photoplethysmographic pulses in two wavelengths, generally in the red and infrared regions. The calibration of the measured photoplethysmographic signals is performed empirically for each type of commercial pulse-oxi...
متن کاملRecent advances in pulse oximetry
Conventional pulse oximetry uses two wavelengths of light (red and infrared) transmitted through a finger and a photodetector to analyze arterial hemoglobin oxygen saturation and pulse rate. Recent advances in pulse oximetry include: extended analysis of the photo plethysmographic waveform; use of multiple wavelengths of light to quantify methemoglobin, carboxyhemoglobin and total hemoglobin co...
متن کاملNear-infrared transmittance pulse oximetry with laser diodes.
Pulse oximeters are widely used for noninvasive monitoring of oxygen saturation in arterial blood hemoglobin. We present a transmittance pulse oximetry system based on near-infrared (NIR) laser diodes (750 and 850 nm) for monitoring oxygen saturation of arterial blood hemoglobin. The pulse oximetry system is made up of the optical sensor, sensor electronics, and processing block. Also, we show ...
متن کاملCalibration of Contactless Pulse Oximetry
BACKGROUND Contactless, camera-based photoplethysmography (PPG) interrogates shallower skin layers than conventional contact probes, either transmissive or reflective. This raises questions on the calibratability of camera-based pulse oximetry. METHODS We made video recordings of the foreheads of 41 healthy adults at 660 and 840 nm, and remote PPG signals were extracted. Subjects were in norm...
متن کامل